p-adic polylogarithms and irrationality

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FINITE AND p-ADIC POLYLOGARITHMS

The finite logarithm was introduced by Kontsevich (under the name “The 1 1 2 logarithm”) in [Kon]. The finite logarithm is the case n = 1 of the n-th polylogarithm lin ∈ Z/p[z] defined by lin(z) = ∑p−1 k=1 z /k. In loc. cit. Kontsevich proved that the finite logarithm satisfies a 4-term functional equation, known as the fundamental equation of information theory. The same functional equation is...

متن کامل

Irrationality of some p-adic L-values

We give a proof of the irrationality of the p-adic zeta-values ζp(k) for p = 2, 3 and k = 2, 3. Such results were recently obtained by F.Calegari as an application of overconvergent p-adic modular forms. In this paper we present an approach using classical continued fractions discovered by Stieltjes. In addition we show irrationality of some other p-adic L-series values, and values of the p-adi...

متن کامل

Li(p)-service? An algorithm for computing p-adic polylogarithms

We describe an algorithm for computing Coleman’s p-adic polylogarithms up to a given precision.

متن کامل

CRYSTALLINE SHEAVES, SYNTOMIC COHOMOLOGY AND p-ADIC POLYLOGARITHMS

In [BD92] (see also [HW98]), A. A. Beilinson and P. Deligne constructed the motivic polylogarithmic sheaf on PQ\{0, 1,∞}. Its specializations at primitive d-th roots of unity give the Beilinson’s elements of H M(Q(μd),Q(m)) = K2m−1(Q(μd))⊗ Q (m ≥ 1), whose images under the regulator maps to Deligne cohomology are the values of m-th polylogarithmic functions at primitive d-th roots of unity. The...

متن کامل

Irrationality of Certain p - adic Periods for Small p

Apéry’s proof [13] of the irrationality of ζ(3) is now over 25 years old, and it is perhaps surprising that his methods have not yielded any significant new results (although further progress has been made on the irrationality of zeta values [1, 14]). Shortly after the initial proof, Beukers produced two elegant reinterpretations of Apéry’s arguments; the first using iterated integrals and Lege...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2009

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa139-1-4